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ABSTRACT −−−−The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE b
evaluating advanced automotive technologies in a systems context. ANL has developed a unique set of compat
simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardw
testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides
Nitrogen (NOx) emissions in a so-called ‘pre-transmission’ parallel hybrid powertrain. The powertrain configuration (in
simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuous
Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in 
simulated environment using PSAT with different controllers (fuzzy logic and rule based) and engine models (neural
network and steady state models developed from ANL data).
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1. INTRODUCTION

The search for improved fuel economy and reduced
emissions, without sacrificing performance, safety,
reliability, and affordability has made the hybrid vehicles
a challenge for the automotive industry. Diesel engines
offer high fuel economy, but produce undesirable
emissions (particulate matter and NOx) in conventional
vehicles. Hybridization, i.e., by adding a traction motor
and energy storage, can potentially reduce these emissions
by operating the engine in the optimum efficiency range
and capturing regenerative braking during deceleration.

To better understand the potential benefits of hybridi-
zation, ANL has developed an integrated set of tools for
modeling, simulating and testing propulsion components,
systems and vehicles. The first phase of this study,
described in this paper, demonstrates the fuel economy
versus NOx emissions trade-off in simulation. The
second phase, still in process, will attempt to demonstrate
similar results in hardware using the Hardware-In-the-
Loop (HIL) test cell at the APRF.

PSAT, developed under Matlab/Simulink, was used in
this study because it is a forward-looking model,
allowing realistic control strategies to be developed that

can be translated directly for use with the hardware in 
APRF. PSAT is a command-based model, meaning t
vehicle performance is estimated from the calculat
component torque response to realistic commands, s
as throttle for the engine, displacement for the clutc
gear number for the transmission, or mechanical brak
for the wheels. Essentially, a driver model attempts 
follow a pre-defined speed cycle. Since the simulat
components react realistically to the commands a
transient effects are taken into account (such as eng
starting, clutch engagement/disengagement, or shiftin
realistic control strategies can be developed.

Several PSAT characteristics, previously describ
(Deville and Rousseau, 2001; Rousseau et al., 2001),
have been useful in the study:

(1) Flexibility to exchange control strategies while th
rest of the powertrain model remains the same;

(2) Easily exchanged component models to facilita
the comparison of steady-state and neural network eng
models;

(3) Capability to run batch mode;
(4) Validated component and vehicle models (Rousse

et al., 2001).

The characteristics of the conventional (reference) a
hybrid vehicles are listed in the following table an
Figure 1 shows the PSAT Simulink model of the pr*Corresponding author. e-mail: arousseau@anl.gov
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ransmission parallel hybrid powertrain used in this study.

2. COMPARISON OF CONTROL STRATEGIES 

The philosophy behind the control strategies is that the
energy in the system should be managed such that: 

(1) Driver inputs (from brake and accelerating pedals)
are satisfied consistently (driving the hybrid vehicle should
not “feel” different from driving a conventional vehicle); 

(2) The battery is sufficiently charged (to meet perfor-
mance requirements); and 

(3) The overall system efficiency is optimal (based on

t

he engine, motor, battery, and transmission).
The power controller implements this philosophy (

the form of control rules or adaptive strategies) to determ
how much power is needed to drive the wheels, h
much to charge the battery and the power dema
allocated to the engine and motor. If the battery needs
be charged, negative power is assigned to the elec
motor, and the engine provides the power for bo
driving and charging the battery. To determine th
optimal power split and the power generation/conversi
of the individual components, efficiency maps of th
components are used. Rule based and fuzzy logic strate

Table 1. Comparison of reference and hybrid vehicle characteristics.

Conventional Pre-Transmission Parallel Hybrid 

Vehicle 
Characteristics

Mass=1100 kg
FRONTAL AREA=1.5 M2

Coefficient of Drag=0.2

Mass=1297 kg
FRONTAL AREA=1.5 M2

Coefficient of Drag=0.2
Engine 1.7L CIDI Mercedes Benz (75 kW) 1.7L CIDI Mercedes Benz (75 kW)
Motor UQM Permanent magnet (32 kW continuous)
Transmission 4 gear automatic (3:1, 1.7:1, 1:1, 0.7:1) Modified Nissan CVT (ratio range 0.5 to 2
Final drive 3.24:1 3.1:1
Battery 12v Pb-Acid (SLI) Li-Ion 14Ah 96 elements ANL prototype 
Accessories Mechanical=500W

Electrical=200W
Mechanical=500W
Electrical=700W

Figure 1. PSAT model−pre-transmission CVT parallel hybrid.
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described in the following paragraphs, were developed,
simulated and compared in this paper.

2.1. Rule Based Control
Rule based control attempts to optimize engine efficiency
by staying on the best efficiency curve. The engine can
provide the required wheel power plus, depending upon
state-of-charge (SOC), power to recharge the battery.
Engine speed is regulated by the CVT ratio and the
electric motor provides power to improve the overall
drivetrain efficiency (e.g., used alone at low vehicle
power demands).

2.2. Fuzzy Logic Control 
The CIDI engine efficiency is highest for engine speeds
between 180 and 260 rd/s on the optimal curve, corre-
sponding to an engine power between 25 and 50 kW,
with the absolute optimum at 44 kW. Therefore, the
power-split strategy should preferably result in an engine
power in this range. A similar approach has been used to
analyze the efficiency of the permanent magnet motor/
generator, however motor speed is directly related to
vehicle speed and the efficiency can only be optimized by
optimizing motor power at a given motor speed.

To study the trade-off between fuel economy and
emissions, two strategies were tuned and analyzed:

(1) Fuel economy optimization (cf. Figure 2 upper curve);
(2) NOx emissions optimization (cf. Figure 2 lower curve).

Figure 3 presents a simplified overview of the pow
controller. The first block converts the driver inputs from
the brake and accelerator pedals to a driver pow
command. The signals from the pedals are normalized
a value between zero and one (zero: pedal is not pres
one: pedal fully pressed). The braking pedal signal is th
subtracted from the accelerating pedal signal, so that
driver input takes a value between −1 and +1.

The fuzzy energy management strategy described be
has been implemented using a Takagi-Sugeno fu
logic controller (Takagi and Sugeno, 1985). A fuzz
logic controller relates the controller outputs to the inpu
using a list of if-then statements called rules (example
Table 2). The if-part of the rules refers to adjectives th
describe regions (fuzzy sets) of the input variable. 
particular input value belongs to these regions to a cer

Figure 2. MB 1.7L Engine Map (ANL data).

Figure 3. Fuzzy logic controller block diagram.

Table 2. Example rules of the fuzzy logic controller.

1 If  SOC is too high then Pgen is 0 kW
2 If  SOC is normal and Pdriver is normal and ω is 

optimal then Pgen is 10 kW
3 If  SOC is normal and ωEM is not optimal then Pgen 

is 0 kW
4 If  SOC is low and Pdriver is normal and ωEM is low 

then Pgen is 5 kW
5 If  SOC is low and Pdriver is normal and ωEM is not 

low then Pgen is 15 kW
6 If  SOC is too low then Pgen is Pgen,max

7 If  SOC is too low then scale factor is 0
8 If  SOC is not too low and Pdriver is high then Pgen 

is 0 kW
9 If  SOC is not too low then scale factor is 1

Figure 4. Example of membership functions.
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degree, represented by the degree of membership (see
Figure 4 for examples of membership functions that
define the degree of membership). The then-part of the
rules of a Takagi-Sugeno controller refers to values of the
output variable. To obtain the output of the controller, the
degrees of membership of the if-parts of all rules are
evaluated, and the then-parts of all rules are averaged,
weighted by these degrees of membership.

If the SOC is too high (rule 1) the desired generator
power (Pgen) will be zero, to prevent overcharging the
battery. If the SOC is normal (rules 2 and 3), the battery
will only be charged when both the EM speed is optimal
and the driver power is normal. If the SOC drops too low,
the battery will be charged at a higher power level. This
will result in a relatively fast recovery to a normal SOC.
If the SOC drops to too low (rules 6 and 7), the SOC is
increased as fast as possible to prevent battery damage.
To achieve this, the generator power is maximized and
the scaling factor is decreased from one to zero. Rule 8
prevents battery charging when the driver power demand
is high and the SOC is not too low. Charging in this
situation moves the engine power outside the optimum
range (25-50 kW). Finally, when the SOC is not too low
(rule 9), the scaling factor is one.

3. COMPARISON OF ENGINE MODELS

3.1. Neural Network
Neural network (NN) models were generated to simulate
the transient behavior of fuel rate and NOx using a
Pierburg Emissions Bench. The models were trained
using selected transient data inputs recorded from a
Mercedes 1.7L CIDI engine. The resultant neural network
was validated using unique transient data recorded from
the same engine. 

3.2. Steady State Engine Map
To further quantify the simulation accuracy of the trained
fuel rate NN model, an engine map (EM) model was
generated using a locus of steady state operating point
data recorded from the same engine. The model was
instructed to simulate the same transient training and
validation cycles previously submitted to the neural
network model for simulation. Equivalent error plots and
statistical error calculations were generated from the
subsequent EM model simulation data results. The
simulation accuracy of a NN model was then compared
to the accuracy of the steady state EM model. The results
are summarized in the following paragraph and details of
the model generation and validation are included in the
Appendix.

Figures 5 and 6 illustrate the differences in using fuel
rate neural network and engine map models on the US06
validation cycle. The NN model simulation output was

continuous and maintained minimal phase different
compared to the measured data. By contrast, the 
model simulation output contained magnitude errors a
multiple discontinuities in addition to a time shift erro
with respect to the measured data. The EM mod
discontinuities are due to transient operation outside 
bounds of the steady state data range, upon which 
map model is predicated. The phase shift is likely due
measurement time delays in the test cell. Since the 
model is generated on mean steady state data, simula
using this model incorporate no time delay, an
subsequently lead the measured data in time. The 
model not only simulated the volumetric fuel rate wit
accurate magnitude predictions, but also matched 
phasing of the fuel rate data vector.

Figure 5. NN vs. EM model validation cycle (ANL data
red, EM - blue, NN - green).

Figure 6. EM simulation vs. measured US06 data (AN
data - red, EM - blue, NN - green).
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4. RESULTS

The vehicle was simulated on urban and highway driving
cycles using the two control strategies (rule based and
fuzzy logic) and the neural network model (based on the
previous comparison). Fuel economy and NOx emissions
were compared taking into account battery SOC. Due to
the significant impact of SOC on fuel economy and
emissions, the method used in this study is presented first.

4.1. Influence of SOC on Fuel Economy and NOx
Emissions
Initial and final SOC of the electrical energy storage
device must be considered to accurately account for the
total energy used when evaluating hybrid vehicle fuel
economy. Either the initial SOC must equal the final
SOC or a correction must be made. Figure 7, based on the

following calculations, graphically illustrates the stron
relationship between SOC difference and fuel econo
(i.e., measured/estimated gasoline equivalent ver
hybrid gasoline equivalent):

FEgasoline_equivalent=

Eq_gal_of_gasoline=

× fuel_consum.(kg) ×

FE_hybrid_gasoline_eq=

Dis tan ce miles( )
Eq_gal_of_gasoline
------------------------------------------------------

fuel_heating_value

gasoline_fuel_heating_value
------------------------------------------------------------------------------

liters2gal 1000×
fuel_density

--------------------------------------------

Dis tan ce miles( )
Eq_gal_of_gasoline+Wh_cons/Wh_per_gal/

Battery_eff/Charg_eff/Engineering

-----------------------------------------------------------------------------------------------------------------------

Figure 7. Fuel economy correction for SOC.
Figure 8. NOx correction for SOC.

Figure 9. Influence of control strategy on fuel economy and NOx emissions.
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The hybrid gasoline equivalent fuel economy estimates
the energy necessary to recharge the battery to its initial
SOC. The figure shows comparable values when initial
and final SOC are close, but differences can be
significant as the difference increases. Using the same
methodology, Figure 8 demonstrates that NOx emissions
can also be SOC corrected.

4.2. Influence of Control Strategy on Fuel Economy and
NOx Emissions

Figure 9 illustrates the impact of SOC and control
strategy on fuel economy and NOx emissions: 

(1) SOC significantly affects the results on the urban
cycle; for rule based control, changing the SOC goal
from 0.5 to 0.7 increases fuel economy by almost 20% as
well as reduces NOx emissions;

(2) Fuzzy logic needs to be refined for the highway
cycle since better results are obtained with rule based

control;
(3) Variation of −/+ 10% in fuel economy and NOx

emissions can be obtained by varying control strate
philosophy and parameters;

(4) In addition to control strategy, initial condition
and overall system efficiency induce a variation of fu
economy and NOx results. 

When developing a control strategy, trade-offs oth
than fuel economy and emissions should be taken i
account. For example, battery life considerations cou
dictate SOC lower than 0.7 even if fuel economy a
NOx might be penalized.

4.3. Influence of Hybridization on Fuel Economy an
NOx Emissions
Hybridization can increase fuel economy by keeping t
engine in an optimum efficiency range. In general, and
particular for the engine considered in this study, th
means higher average load and speed which lead
higher average operating temperature and higher N
emissions. The following figures compare the operati
points for the same engine in conventional (Figure 1
and hybrid (Figure 11) vehicle applications to illustra
this point. 

This comparison supports the results of the analysis
this study, illustrated in Figure 12, that hybridizatio
without changing engine size can increase fuel econo
(18% in the example), but increase NOx emissions (25
in the example). However, if the engine had ide
characteristics for a hybrid vehicle with larger islands 
high efficiency and low emissions (originally develope
for the PNGV program), the result could be a fu
economy increase of about 13% accompanied by a N
decrease of almost 40%.

Figure 10. Operating points (conventional).

Figure 11. Operating points (hybrid). 

Figure 12. Trade-off between fuel economy and NO
emissions. 
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5. CONCLUSION

A neural network model was developed to realistically
assess NOx emission. We demonstrated that hybridization
allows both the diminution of both fuel consumption and
NOx emission. Moreover, control strategies philosophies
as well as parameter values also play an important part of
the trade-off between fuel economy and emission.
However, even if hybridization and control play an
important role, optimizing the entire system remains the
ultimate solution. To do so, each component has to be
chosen and calibrated based on a system prospective. In
order to validate the tools developed, control strategies
will be integrated and tested on a bench with real
component using Hardware-in-the-Loop.
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APPENDIX - Engine Model Development

Neural Network Model
Neural Network (NN) models were generated to simula
the transient behavior of fuel rate and NOx obtained fro
a Pierburg emissions bench. The Neural Network mod
were trained using selected transient data inputs recor
from a Mercedes 1.7L CIDI engine. The resultant neu
network was validated using unique transient da
recorded from the 1.7L CIDI engine.

Neural Network Training Data
Training data, recorded from transient operation of t
1.7L CIDI engine, was submitted to the NN models 
contiguous block form. The training data consisted o
collection of (4) geometric transient cycles, and (3) dri
cycles. The training data was selected to encompass
widest range of engine operation, first in simulated dri
cycle operation, and second through augmentation
drive cycle data with geometric transient cycles. T
combination of both transient cycle data topologi
provided wide engine map coverage.

Neural Network Training
The training data was presented to the NN a series
times, and training was discontinued at the point 

Figure A-1. NOx NN model validation (measured - blu
simulated - green).
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diminishing return. In particular, once the simulation
error no longer decreased, following exposure to another
training set session, the training session was terminated.
The inputs to the NN model were engine speed, map
torque and time delayed map torque. The fuel rate neural
models incorporated a total of nine hidden neurons, in
addition to the output fuel rate neuron, and the input
vector neurons, whereas the NOx neural model has a total
of ten hidden neurons, in addition to the output NOx
neuron, and the input vector neurons.

Evaluation of Training Effectiveness
The trained NN model was presented with the training set
data and instructed to simulate said data accordingly.
Comparison of simulated vs. measured data was plotted
against time, in addition to simulated data vs. measured

data. Error calculations were performed; the quality 
the simulation was defined by the error plots and for
coming statistical error calculations. Figure X illustrate
the simulation accuracy through comparison to t
measured data. The simulation data is identified in gre
and the measured data in blue.

Steady State Model
To further quantify the simulation accuracy of the traine
fuel rate NN model, an engine map (EM) model w
generated using a locus of steady state operating p
data recorded from the same engine. The model w
instructed to simulate the same transient training a
validation cycles previously submitted to the neur
network model for simulation. Equivalent error plots an
statistical error calculations were generated from t

Figure A-2. NOx simulated vs. measured training data.

Figure A-3. US06 VFF EMM validation drive cycle
(Measured data - blue, EM model simulation - green).

Figure A-4. EMM simulation vs. measured US06 data.

Figure A-5. Zoom plot US06 fuel rate NN validation
US06. 
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subsequent EM model simulation data results. The

simulation accuracy of a NN model was then compared

to the accuracy of the steady state EM model. Figures
3 and A-4 show the NN model vs. EM model comparis
using the US06 Validation cycle.

Validation of Neural Network Model using Transien
Test Data
The trained NN model, having predicted the training da
with a high degree of precision, was next evaluated w
data never before introduced to this model. Each cy
was individually presented to the trained NN model, a
subsequent comparison and error plots were genera
Error calculations revealed the simulation coefficient 
determination (R2) deviation from ideal was in the range
of 0.9691 to 0.9946 for the fuel rate model and 0.8453
0.9947 for the Pierburg NOx model.

Figures A-5 through A-8 illustrate an example of th
simulation of a US06 validation driving cycle using th
volumetric fuel rate NN model as well as the Pierbu
NOx NN model.

Figure A-6. Fuel rate simulated vs. measured.

Figure A-7. Zoom plot US06 NOx NN validation.

Figure A-8. NOx simulated vs. measured US06.
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