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ABSTRACT -The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by
evaluating advanced automotive technologies in a systems context. ANL has developed a unique set of compatible
simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardware
testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of
Nitrogen (NOx) emissions in a so-called ‘pre-transmission’ parallel hybrid powertrain. The powertrain configuration (in
simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously
Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in a
simulated environment using PSAWith different controllers (fuzzy logic and rule based) and engine models (neural
network and steady state models developed from ANL data).
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1. INTRODUCTION can be translated directly for use with the hardware in the

APRF. PSAT is a command-based model, meaning that
The search for improved fuel economy and reducedvehicle performance is estimated from the calculated
emissions, without sacrificing performance, safety,component torque response to realistic commands, such
reliability, and affordability has made the hybrid vehicles as throttle for the engine, displacement for the clutch,
a challenge for the automotive industry. Diesel engineggear number for the transmission, or mechanical braking
offer high fuel economy, but produce undesirablefor the wheels. Essentially, a driver model attempts to
emissions (particulate matter and NOx) in conventionalfollow a pre-defined speed cycle. Since the simulated
vehicles. Hybridization, i.e., by adding a traction motor components react realistically to the commands and
and energy storage, can potentially reduce these emissiotansient effects are taken into account (such as engine
by operating the engine in the optimum efficiency rangestarting, clutch engagement/disengagement, or shifting),
and capturing regenerative braking during decelerationrealistic control strategies can be developed.

To better understand the potential benefits of hybridi- Several PSAT characteristics, previously described
zation, ANL has developed an integrated set of tools for(Deville and Rousseau, 2001; Rousseawal, 2001),
modeling, simulating and testing propulsion components have been useful in the study:
systems and vehicles. The first phase of this study, (1) Flexibility to exchange control strategies while the
described in this paper, demonstrates the fuel economsest of the powertrain model remains the same;
versus NOx emissions trade-off in simulation. The (2) Easily exchanged component models to facilitate
second phase, still in process, will attempt to demonstratéhe comparison of steady-state and neural network engine
similar results in hardware using the Hardware-In-the-models;

Loop (HIL) test cell at the APRF. (3) Capability to run batch mode;

PSAT, developed under Matlab/Simulink, was used in (4) Validated component and vehicle models (Rousseau

this study because it is a forward-looking model, et al, 2001).

allowing realistic control strategies to be developed that'I'he characteristics of the conventional (reference) and

hybrid vehicles are listed in the following table and
*Corresponding authore-mail: arousseau@anl.gov Figure 1 shows the PSAT Simulink model of the pre-

47



48 A. ROUSSEAUEet al.

Table 1. Comparison of reference and hybrid vehicle characteristics.

Conventional Pre-Transmission Parallel Hybrid
Vehicle Mass=1100 kg Mass=1297 kg
Characteristics = FRONTAL AREA=1.5 M FRONTAL AREA=1.5 M

Coefficient of Drag=0.2 Coefficient of Drag=0.2
Engine 1.7L CIDI Mercedes Benz (75 kW) 1.7L CIDI Mercedes Benz (75 kW)
Motor UQM Permanent magnet (32 kW continuous)
Transmission 4 gear automatic (3:1, 1.7:1, 1:1, 0.7:1) Modified Nissan CVT (ratio range 0.5 to 2.5)
Final drive 3.24:1 3.11
Battery 12v Pb-Acid (SLI) Li-lon 14Ah 96 elements ANL prototype
Accessories Mechanical=500W Mechanical=500W

Electrical=200W Electrical=700W

o[ g | 4 A
CONTROLLER % MRl :

powertrain_model

Figure 1. PSAT modepre-transmission CVT parallel hybrid.

ransmission parallel hybrid powertrain used in this study.he engine, motor, battery, and transmission).
The power controller implements this philosophy (in
2. COMPARISON OF CONTROL STRATEGIES the form of control rules or adaptive strategies) to determine
how much power is needed to drive the wheels, how
The philosophy behind the control strategies is that thenuch to charge the battery and the power demand
energy in the system should be managed such that: allocated to the engine and motor. If the battery needs to
(1) Driver inputs (from brake and accelerating pedals)be charged, negative power is assigned to the electric
are satisfied consistently (driving the hybrid vehicle shouldmotor, and the engine provides the power for both
not “feel” different from driving a conventional vehicle); driving and charging the battery. To determine the
(2) The battery is sufficiently charged (to meet perfor- optimal power split and the power generation/conversion
mance requirements); and of the individual components, efficiency maps of the
(3) The overall system efficiency is optimal (based oncomponents are used. Rule based and fuzzy logic strategies,
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MB 1.7L CIDI Engine Map - Generated by ANL Table 2. Example rules of the fuzzy logic controller.

1 If SOC is too higtthen P, is 0 kW

2 If SOC is normahnd Py, is normaland w is
optimal then P, is 10 kW

3 If SOC is normabnd wyy is not optimalthen Py,
is 0 kw

4 If SOC is lowand Py, is normaland wx,, is low
then Py, is 5 kW

5 If SOC is lowand Py, is normaland w, is not
low then Py, is 15 kW

6 If SOC is too lowthen Py, iS ey max
If SOC is too lowthen scale factor is 0

If SOC isnot too low and Py is highthen Py,
is 0 kW

9 If SOC isnot too low then scale factor is 1

described in the following paragraphs, were developed,
simulated and compared in this paper.

torque (Nrm)

speed (rd/s)

o

Figure 2. MB 1.7L Engine Map (ANL data).

Figure 3 presents a simplified overview of the power
2.1. Rule Based Control controller. The first block converts the driver inputs from
Rule based control attempts to optimize engine efficiencythe brake and accelerator pedals to a driver power
by staying on the best efficiency curve. The engine cartommand. The signals from the pedals are normalized to
provide the required wheel power plus, depending upora value between zero and one (zero: pedal is not pressed,
state-of-charge (SOC), power to recharge the batteryone: pedal fully pressed). The braking pedal signal is then
Engine speed is regulated by the CVT ratio and thesubtracted from the accelerating pedal signal, so that the
electric motor provides power to improve the overall driver input takes a value betweef and +1.
drivetrain efficiency (e.g., used alone at low vehicle The fuzzy energy management strategy described below

power demands). has been implemented using a Takagi-Sugeno fuzzy
logic controller (Takagi and Sugeno, 1985). A fuzzy
2.2. Fuzzy Logic Control logic controller relates the controller outputs to the inputs

The CIDI engine efficiency is highest for engine speedsusing a list of if-then statements called rules (example in
between 180 and 260 rd/s on the optimal curve, correTable 2). The if-part of the rules refers to adjectives that
sponding to an engine power between 25 and 50 kWdescribe regions (fuzzy sets) of the input variable. A
with the absolute optimum at 44 kW. Therefore, theparticular input value belongs to these regions to a certain
power-split strategy should preferably result in an engine
power in this range. A similar approach has been used to

= g=3 ‘
analyze the efficiency of the permanent magnet motor, 5 | _normal high
generator, however motor speed is directly related tc 2
vehicle speed and the efficiency can only be optimized by é
optimizing motor power at a given motor speed. 5 09
To study the trade-off between fuel economy and Q
emissions, two strategies were tuned and analyzed: > 0 ‘ ‘
o : 8 o 20 40 60 80
(1) Fuel economy optimization (cf. Figure 2 upper curve); Driver power command (kW)
(2) NOx emissions optimization (cf. Figure 2 lower curve). a ‘
ﬁ too low low normaltoo high
3 1
Vehicle Driver QE)
Speed - Power E 0.5
Diver | commana S22 Generator | |ioe pover 5
Commandl Interpreter Power K:EE;IH gg
soc i';;fcy Scaling Power | EM Power S 0 ( : . .
Controller | Factor 8 o 0.2 0.4 0.6 0.8 1
EMSpeed | State of charge

Figure 3. Fuzzy logic controller block diagram. Figure 4. Example of membership functions.
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If the SOC is too high (rule 1) the desired generator &~ H} ‘
power (Pgen) will be zero, to prevent overcharging the Ry
battery. If the SOC is normal (rules 2 and 3), the battery \
will only be charged when both the EM speed is optimal Ry /
and the driver power is normal. If the SOC drops too low, f/ J v
the battery will be charged at a higher power level. This ‘ ‘ ‘
will result in a relatively fast recovery to a nhormal SOC. : e
If the SOC drops to too low (rules 6 and 7), the SOC is
increas_ed as fast as possible to preve.nt ba“,e'Y OlamagFigure 5. NN vs. EM model validation cycle (ANL data -
To achieve this, the generator power is maximized ant..4 Em - blue. NN - green).
the scaling factor is decreased from one to zero. Rule i '
prevents battery charging when the driver power deman:
is high and the SOC is not too low. Charging in this 2=
situation moves the engine power outside the optimurr ©=%%**77##°
range (25-50 kW). Finally, when the SOC is not too low =" & b i (R T o
(rule 9), the scaling factor is one.

3. COMPARISON OF ENGINE MODELS

ining Set 6m, o Fuel Flow MapT Delay.

3.1. Neural Network

Neural network (NN) models were generated to simulate
the transient behavior of fuel rate and NOx using a
Pierburg Emissions Bench. The models were trainec
using selected transient data inputs recorded from
Mercedes 1.7L CIDI engine. The resultant neural network
was validated using unique transient data recorded fron
the same engine.

alc Fuel Flow Y(Elue) 217 Merged US06 Mult sp Set 6 CTO ug Jd rai

, Figure 6. EM simulation vs. measured US06 data (ANL
3.2. Steady State Engine Map data - red, EM - blue, NN - green).
To further quantify the simulation accuracy of the trained

fuel rate NN model, an engine map (EM) model was
generated using a locus of steady state operating poimontinuous and maintained minimal phase differential
data recorded from the same engine. The model wasompared to the measured data. By contrast, the EM
instructed to simulate the same transient training andnodel simulation output contained magnitude errors and
validation cycles previously submitted to the neural multiple discontinuities in addition to a time shift error
network model for simulation. Equivalent error plots and with respect to the measured data. The EM model
statistical error calculations were generated from thediscontinuities are due to transient operation outside the
subsequent EM model simulation data results. Thebounds of the steady state data range, upon which the
simulation accuracy of a NN model was then comparednap model is predicated. The phase shift is likely due to
to the accuracy of the steady state EM model. The resultsieasurement time delays in the test cell. Since the EM
are summarized in the following paragraph and details ofnodel is generated on mean steady state data, simulations
the model generation and validation are included in theusing this model incorporate no time delay, and
Appendix. subsequently lead the measured data in time. The NN
Figures 5 and 6 illustrate the differences in using fuelmodel not only simulated the volumetric fuel rate with
rate neural network and engine map models on the USO&ccurate magnitude predictions, but also matched the
validation cycle. The NN model simulation output was phasing of the fuel rate data vector.
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Gasoline FE versus Hybrid Gasoline Equivalent FE NOx Correction for SOC
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Figure 7. Fuel economy correction for SOC. g

4. RESULTS following calculations, graphically illustrates the strong
relationship between SOC difference and fuel economy

The vehicle was simulated on urban and highway driving(i.e., measured/estimated gasoline equivalent versus
cycles using the two control strategies (rule based anthybrid gasoline equivalent):
fuzzy logic) and the neural network model (based on the . .

) . o . . Dis tance( mileg
previous comparison). Fuel economy and NOx emission$-Egasoline_equivalent E I of T
were compared taking into account battery SOC. Due to q.gal_of_gasoline
the significant impact of SOC on fuel economy and fuel_heating value

emissions, the method used in this study is presented firSIEq_gal_of_gasollne gasoline fuel heating value
liters2gal x 1000

fuel_density

4.1. Influence of SOC on Fuel Economy and NOx x fuel_consunfkg) x

Emissions
Initial and final SOC of the electrical energy storage FE_hybrid_gasoline_eg
device must be considered to accurately account for the Dis tance( mile9

total energy used when evaluating hybrid vehicle fuel
economy. Either the initial SOC must equal the final
SOC or a correction must be made. Figure 7, based on the

Eq _gal_of_gasolinetWh congdWh per_gal/
Battery eff/Charg_efffEngineering
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Figure 9. Influence of control strategy on fuel economy and NOx emissions.
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The hybrid gasoline equivalent fuel economy estimates
the energy necessary to recharge the battery to its initic
SOC. The figure shows comparable values when initial
and final SOC are close, but differences can be
significant as the difference increases. Using the sam
methodology, Figure 8 demonstrates that NOx emission:
can also be SOC corrected.

4.2. Influence of Control Strategy on Fuel Economy and
NOx Emissions

Figure 9 illustrates the impact of SOC and control
strategy on fuel economy and NOx emissions:

(1) SOC significantly affects the results on the urban
cycle; for rule based control, changing the SOC goal
from 0.5 to 0.7 increases fuel economy by almost 20% a:
well as reduces NOx emissions;

(2) Fuzzy logic needs to be refined for the highway
cycle since better results are obtained with rule basei
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Figure 10. Operating points (conventional).
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Figure 11. Operating points (hybrid).
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Influence of Hybridization and Engine Calibration
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Figure 12. Trade-off between fuel economy and NOx
emissions.

control;

(3) Variation of—/+ 10% in fuel economy and NOXx
emissions can be obtained by varying control strategy
philosophy and parameters;

(4) In addition to control strategy, initial conditions
and overall system efficiency induce a variation of fuel
economy and NOx results.

When developing a control strategy, trade-offs other
than fuel economy and emissions should be taken into
account. For example, battery life considerations could
dictate SOC lower than 0.7 even if fuel economy and
NOx might be penalized.

4.3. Influence of Hybridization on Fuel Economy and
NOx Emissions

Hybridization can increase fuel economy by keeping the
engine in an optimum efficiency range. In general, and in
particular for the engine considered in this study, this
means higher average load and speed which leads to
higher average operating temperature and higher NOx
emissions. The following figures compare the operating
points for the same engine in conventional (Figure 10)
and hybrid (Figure 11) vehicle applications to illustrate
this point.

This comparison supports the results of the analysis in
this study, illustrated in Figure 12, that hybridization
without changing engine size can increase fuel economy
(18% in the example), but increase NOx emissions (25%
in the example). However, if the engine had ideal
characteristics for a hybrid vehicle with larger islands of
high efficiency and low emissions (originally developed
for the PNGV program), the result could be a fuel
economy increase of about 13% accompanied by a NOx
decrease of almost 40%.
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5. CONCLUSION Sharer, P. and Rousseau, A. (200Zalidation of the
Japan Toyota Prius Using PSADOE Report, March

A neural network model was developed to realistically 2001.

assess NOx emission. We demonstrated that hybridizatiohakagi, T. and Sugeno, M. (1985). Fuzzy identification

allows both the diminution of both fuel consumption and of systems and its application to modeling and control.

NOx emission. Moreover, control strategies philosophies |IEEE Transactions on Systenian and Cybernetics,

as well as parameter values also play an important part of 15, 1,116-132.

the trade-off between fuel economy and emission.

However, even if hybridization and control play an

important role, optimizing the entire system remains theAPPENDIX - Engine Model Development

ultimate solution. To do so, each component has to be

chosen and calibrated based on a system prospective. Meural Network Model

order to validate the tools developed, control strategiesNeural Network (NN) models were generated to simulate

will be integrated and tested on a bench with realthe transient behavior of fuel rate and NOx obtained from

component using Hardware-in-the-Loop. a Pierburg emissions bench. The Neural Network models
were trained using selected transient data inputs recorded
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Training data, recorded from transient operation of the
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Figure A-2. NOx simulated vs. measured training data. Figure A-4. EMM simulation vs. measured US06 data.

diminishing return. In particular, once the simulation data. Error calculations were performed; the quality of
error no longer decreased, following exposure to anothethe simulation was defined by the error plots and forth-
training set session, the training session was terminateatoming statistical error calculations. Figure X illustrates
The inputs to the NN model were engine speed, mapghe simulation accuracy through comparison to the
torque and time delayed map torque. The fuel rate neuraheasured data. The simulation data is identified in green,
models incorporated a total of nine hidden neurons, irand the measured data in blue.
addition to the output fuel rate neuron, and the input
vector neurons, whereas the NOx neural model has a tot&8lteady State Model
of ten hidden neurons, in addition to the output NOx To further quantify the simulation accuracy of the trained
neuron, and the input vector neurons. fuel rate NN model, an engine map (EM) model was
generated using a locus of steady state operating point
Evaluation of Training Effectiveness data recorded from the same engine. The model was
The trained NN model was presented with the training seinstructed to simulate the same transient training and
data and instructed to simulate said data accordinglyvalidation cycles previously submitted to the neural
Comparison of simulated vs. measured data was plottedetwork model for simulation. Equivalent error plots and
against time, in addition to simulated data vs. measuredtatistical error calculations were generated from the
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Figure A-5. Zoom plot US06 fuel rate NN validation

USO06.

Figure A-3. US06 VFF EMM validation drive cycle
(Measured data - blue, EM model simulation - green).
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to the accuracy of the steady state EM model. Figures A-
3 and A-4 show the NN model vs. EM model comparison
using the US06 Validation cycle.

Validation of Neural Network Model using Transient
Test Data
The trained NN model, having predicted the training data
with a high degree of precision, was next evaluated with
data never before introduced to this model. Each cycle
was individually presented to the trained NN model, and
subsequent comparison and error plots were generated.
Error calculations revealed the simulation coefficient of
determination (B deviation from ideal was in the range
of 0.9691 to 0.9946 for the fuel rate model and 0.8453 to
0.9947 for the Pierburg NOx model.

Figures A-5 through A-8 illustrate an example of the
simulation of a US06 validation driving cycle using the

subsequent EM model simulation data results. Thevolumetric fuel rate NN model as well as the Pierburg
simulation accuracy of a NN model was then comparedNOx NN model.
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