Combustion Pressure Controlled
SI Engines:
New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
History

1989

BOSCH: (piezo-resistive)

1986

Texas Instruments: (piezo-electric)

1988

(Honda): Ignition Control (piezo-electric, spark plug)

(Matekunas (GM): Pressure Ratio)

1980

Hubbard, Powell (Stanford): Ignition Control

1992

(Toyota): Lean-Burn Engine (piezo-resistive)

1996

(Optrand: (fibre optical)

2000

(AENEAS (Ricardo/DaimlerChrysler/Kistler) (resistive)

1976

(MTU): Peak Pressure Control (Diesel)

1994

(Opel): Cylinder Pressure Management

1989

(Honda): Ignition Control

1998

(Nissan): Ignition Control (piezo-electric, spark plug)

1990

1998 2000

1998

1. Introduction
Combustion Pressure Sensors for Engine Control

Diesel
- injection timing
- EGR control
- torque control, torque or A/F balancing
- peak pressure supervision

SI
- ignition timing
- A/F ratio, A/F balancing
- EGR/lean limit control
- cold-start and warm-up behaviour

Improved functionality
- emissions
- fuel consumption
- performance

Cost equality
- estimation of intake air mass
- camshaft position sensing
- knock detection (SI)

Reduced calibration effort
- fault detection algorithms
- providing indicated torque signal
- misfire detection

1. Introduction
Combustion Pressure Controlled SI Engines:
New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
Dynamic Engine Test Stand

2. Experiment Environment
2. Experiment Environment

Rapid Control Prototyping and Indicating System

MATLAB/Simulink
Stateflow
Real-Time Workshop

Opel-DTI.mdl
EDC-Model

IndiSPACE.c
on-line Indicating Software

IndiSPACE.m
off-line Indicating Software

Real-Time Interface
Microtec PowerPC C Compiler

ControlDesk
MLIB / MTRACE

Host PC
ISA Bus Interface
DS813 Transmitter Board

RCP-System

PowerPC
DS1005

CAN
DS4302

MUX-A/D
DS2003

Multi-I/O
DS2201-1

Timer
DS2001

Multi-I/O
DS2201-2

DIO/PWM
DS4001

ECU Interface
DS4120

ISA BUS Interface
DS814 Receiver Board

d SPACE PX20 Box

IndiSPACE

PowerPC
DS1005

CAN
DS4302

MUX-A/D
DS2003

Timer
DS2001

RAM
DS4110

CAN, PWM

K-line
KWP 2000

cylinder pressure signals

crankshaft signal

Electronic Control Unit

Norbert Müller
TU Darmstadt
Opel 1.0 Liter, 3 Cylinder SI Engine

- 82 Nm (at 2800 rpm)
- 40 kW (at 5600 rpm)
- electronic throttle control
- exhaust gas recirculation
- cylinder individual ignition timing
- cylinder individual multipoint fuel injection
- fuel mass, ignition and EGR valve can be manipulated externally
Combustion Pressure Controlled SI Engines: New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
Combustion Pressure Evaluation for Ignition Timing Control

- Evaluation of:
 - Location of peak pressure
 - Crank angle of 50% mass fraction burned

Norbert Müller
TU Darmstadt

3. Closed-Loop Ignition Timing Control
Cylinder Pressure Evaluation

Compression stroke (1 → 2): \[p \cdot V^\kappa = C_1 \]
Expansion stroke (3 → 4): \[p \cdot V^\kappa = C_2 \]

\[Q_B \sim C_2 - C_1 = p_{eoc} \cdot V_{eoc}^\kappa - p_{ign} \cdot V_{ign}^\kappa \]

\[x_{MFB}(\theta) \approx \frac{p(\theta) V^\kappa(\theta) - p_{ign} V_{ign}^\kappa}{p_{eoc} V_{eoc}^\kappa - p_{ign} V_{ign}^\kappa} \]

after end of combustion:
1.) calculate \(x_{MFB}(\theta) \) for \(\theta_{ign} < \theta < \theta_{eoc} \)
2.) search \(x_{MFB}(\theta) = 0.5 \) \(\Rightarrow \theta_{MFB=0.5} \)

Constant volume diagram of ideal combustion cycle

Norbert Müller
TU Darmstadt
3. Closed-Loop Ignition Timing Control
Influence of „Location of 50%MFB“ on Indicated Engine Torque

variation of ignition timing at 2000 rpm, 35% load
Cyclic Variation of Combustion Pressure Features at Constant Operating Conditions

- Operating condition: 3000 rpm, 50% load, 0% EGR
- COV\(_{Pmi}\)=1.3%

3. Closed-Loop Ignition Timing Control
Structure of Learning Feed-Forward Ignition Timing Control

3. Closed-Loop Ignition Timing Control
Learning Feed-Forward Ignition Timing Control during load changes

3000 rpm,
0% EGR,
\[\theta_{z,\text{conv}} \approx 26^\circ \text{ b. TDC} \]
adapted Offset-Mappings

3. Closed-Loop Ignition Timing Control
Combustion Pressure Controlled SI Engines: New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
Air-Fuel Ratio Estimation
for SI engines

Applications

• estimation of A/F ratio deviation from $\lambda = 1$ when using switching EGO sensors
• estimation of A/F ratio during warm-up (EGO sensor is inactive)
• detection of A/F ratio maldistribution
 – reduced emissions
 – reduced aging of catalytic converter
Indicated Engine Torque Model for A/F Ratio Estimation

4. Air-Fuel Ratio Estimation

\[\text{air mass} \rightarrow n_{\text{mot}} \rightarrow M_{\text{opt}} \rightarrow M_i \]

\[\lambda \rightarrow \eta_{\lambda,\text{norm}} \]

\[\theta_{\text{opt, 50\% MFB}} \rightarrow \eta_{\theta_{50\% MFB}} \]

\[\text{influence of} \lambda \text{ on indicated torque} \]

\[\text{ignition timing efficiency} \]

\[\text{crank angle location of 50\% MFB}\]
Measurement Results of A/F Ratio Estimation

- **Operating condition:**
 - 2000 rpm,
 - 40% load,
 - 12% EGR,
 - $\theta_z = 24^\circ$CA b.

4. Air-Fuel Ratio Estimation
Combustion Pressure Controlled SI Engines:
New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
Generation of characteristic features for closed-loop control

Coefficient of Variation of indicated mean effective pressure: \[\text{COV}_{p_{mi}} = \frac{\sigma_{p_{mi}}}{\bar{p}_{mi}} \cdot 100\%\]

Driveability limit: \[\text{COV}_{p_{mi}} = 3\% \ldots 10\%\]

Operating conditions:
- 2500 rpm,
- 40\% load,
- \(\theta_{ig} = 20-30^\circ\text{CA} \text{ b. TDC}\)

5. Exhaust gas recirculation control
5. Exhaust gas recirculation control

Operating condition: 2500 rpm, 20-40% load
Combustion Pressure Controlled SI Engines:
New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
iterative approach to calculate cylinder air charge

Partial pressure equations:
\[
\sum_{i=1}^{l} p_i = \sum_{i=1}^{l} (x_i \cdot p_{tot}) = p_{tot}
\]

\[
p_i = m_i \cdot \frac{R_i \cdot T_{tot}}{V_{tot}}
\]

Total cylinder charge:
\[
p_{ref} = p_{Air} + p_{FV} + p_{RG} + p_{EGR}
\]

\[
p_{RG} = m_{RG} \cdot \frac{R_{RG} \cdot T_{ref}}{V_{ref}} \quad \text{with} \quad m_{RG} = \frac{V_c \cdot p_{TDC,GE}}{R_{RG} \cdot T_{RG}}
\]

\[
p_{FV} = m_{FV} \cdot \frac{R_{FV} \cdot T_{ref}}{V_{ref}} \quad \text{with} \quad m_{FV} = \frac{1}{14.7 \cdot \lambda} \cdot m_{Air} = \frac{1}{14.7 \cdot \lambda} \cdot p_{Air} \cdot \frac{V_{ref}}{R_{Air} \cdot T_{ref}}
\]

\[
p_{FV} = p_{Air} \cdot \frac{R_{FV}}{14.7 \cdot \lambda \cdot R_{Air}}
\]

\[
p_{Air} = \frac{p_{ref} - m_{RG} \cdot \frac{R_{RG} \cdot T_{ref}}{V_{ref}}}{1 + \frac{r_{EGR} \cdot 100%}{14.7 \cdot \lambda \cdot R_{Air}}}
\]

\[
T_{ref} = x_{Air} \cdot T_{Air} + x_{RG} \cdot T_{RG} + x_{EGR} \cdot T_{EGR} + x_{FV} \cdot T_{FV}
\]

\[
\Rightarrow \text{iterative calculation of} \ T_{ref}!
\]

6. Calculation of cylinder gas components
sensor signal:
\[U(\theta) = K_s \cdot p(\theta) + U_{bias} \]

polytropic compression:
\[p(\theta_i) = \left(\frac{V(\theta_{ref})}{V(\theta_i)} \right)^k \cdot p_{ref} = c_i \cdot p_{ref} \]

for each measurement sample:
\[U(\theta_i) = K_s \cdot c_i \cdot p_{ref} + U_{bias} \]

\[
\begin{pmatrix}
U(\theta_1) \\
U(\theta_2) \\
\vdots \\
U(\theta_N)
\end{pmatrix} = \begin{pmatrix} 1 & c_1 \\ 1 & c_2 \\ \vdots & \vdots \\ 1 & c_N \end{pmatrix} \begin{pmatrix} U_{bias} \\ K_s \cdot p_{ref} \end{pmatrix}
\]

\[\iff \quad y = X \cdot w \]

\[\iff \quad \text{LS-solution:} \quad w = \left(X^T \cdot X \right)^{-1} \cdot X^T \cdot y \]

6. Calculation of cylinder gas components
measurement results

6. Calculation of cylinder gas components
Füllungserfassung, dynamisch

Arbeitspunkt: 2000 U/min, 0% AGR, ZZP = 25°/17°KW vor OT bei 20%/55% Füllung

6. Calculation of cylinder gas components
Combustion Pressure Controlled SI Engines: New Concepts for Individual Cylinder Control

1. Introduction
2. Experiment Environment
3. Closed-Loop Ignition Timing Control
4. Air-Fuel Ratio Estimation
5. Exhaust gas recirculation control
6. Calculation of cylinder gas components
7. Conclusions
Summary

- closed-loop control of ignition timing
 - compensation for manufacturing tolerances, aging, and changing ambient conditions (fuel quality, air humidity, ...)
 - long term stability of exhaust gas emissions
 - reduced fuel consumption
 - supervision of ignition system

- air-fuel balancing
 - compensation for manufacturing tolerances and aging
 - reduced fuel consumption
 - reduced NOx emissions
 - reduced aging of catalytic converter
 - reduced emissions

- closed-loop control of EGR
 - compensation for manufacturing tolerances and aging
 - reduced fuel consumption
 - reduced NOx emissions

- measurement of indicated torque
 - misfire detection, reduced HC emissions, reduced aging of catalytic converter

- controlled air-fuel unbalancing during warm-up
 - improved warm-up behavior
 - reduced NOx emissions

- reduction of over-fuel during cold-start by supervision of P_{mi}
 - reduced CO and HC emissions