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Abstract

We present a new probability density function (PDF)-based computational model to simulate a homogeneous
charge compression ignition (HCCI) engine with direct injection (DI) during gas exchange. This stochastic reactor
model (SRM) accounts for the engine breathing process in addition to the closed-volume HCCI engine operation.
A weighted-particle Monte Carlo method is used to solve the resulting PDF transport equation. While simulating
the gas exchange, it is necessary to add a large number of stochastic particles to the ensemble due to the intake air
and EGR streams as well as fuel injection, resulting in increased computational expense. Therefore, in this work
we apply a down-sampling technique to reduce the number of stochastic particles, while conserving the statistical
properties of the ensemble. In this method some of the most important statistical moments (e.g., concentration of
the main chemical species and enthalpy) are conserved exactly, while other moments are conserved in a statistical
sense. Detailed analysis demonstrates that the statistical error associated with the down-sampling algorithm is more
sensitive to the number of particles than to the number of conserved species for the given operating conditions. For
a full-cycle simulation this down-sampling procedure was observed to reduce the computational time by a factor
of 8 as compared to the simulation without this strategy, while still maintaining the error within an acceptable
limit. Following the detailed numerical investigation, the model, intended for volatile fuels only, is applied to
simulate a two-stroke, naturally aspirated HCCI engine fueled with isooctane. The in-cylinder pressure and CO
emissions predicted by the model agree reasonably well with the measured profiles. In addition, the new model is
applied to estimate the influence of engine operating parameters such as the relative air—fuel ratio and early direct
injection timing on HCCI combustion and emissions. The qualitative trends observed in the parametric variation
study match well with experimental data in literature.
© 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The development of efficient internal combustion
engines with ultralow emissions is necessitated by
strict regulations on exhaust gas composition and fuel
economy. Homogeneous charge compression ignition
(HCCI) technology, incorporating the advantages of
both spark ignition and compression ignition, is a
potential candidate for future ultralow-emission en-
gine strategies. There are, however, technical hurdles
to overcome before large-scale production and ap-
plication of HCCI engines can be achieved. Further
research and development needs to be conducted in
order to control HCCI combustion and expand the en-
gine operating window. Various approaches such as
multiple direct injections, variable valve timing, dual
fuels, variable compression ratio, and intake charge
heating have shown potential to tackle the above men-
tioned issues [1].

In particular, direct injection (DI) has been widely
investigated to control the spontaneous combustion
as well as to expand the engine operating region.
Optimum values for single direct injection timings
have been demonstrated under different operating
load conditions, and have been shown to be capa-
ble of expanding the lean limit by promoting bet-
ter fuel ignitability [2,3]. Early injection timing re-
sults in a more homogeneous mixture, and it can lead
to thermodynamically unfavorable advanced combus-
tion timing under high load [4,5]. To help control igni-
tion timing and combustion duration, a dual-injection
strategy has been investigated [4,6]. The second fuel
injection can function as an ignition trigger and can
help to limit pressure rise rates caused by too rapid
combustion. Elsewhere, to increase the mixing effi-
ciency and expand the operation limit, a number of
methods were studied to control the direct injection
procedure, such as varying injection pressure, spray
angle, spray shape, and using impingement spray
[7-11]. Furthermore, Su et al. [12] have evaluated the
effects of pulse injection modes on the suppression of
wall wetting.

To evaluate these strategies, computational model-
ing tools can provide significant insight in a cost- and
time-effective manner. A combined single-zone and
multizone based engine cycle model has been intro-
duced for modeling early DI HCCI operation [13]. In
their subsequent study, this approach was further im-
proved by incorporating a refined grid to resolve the
early spray evolution and a coarse grid when chemical
kinetics became prominent [14]. In another study, the
influence of air—fuel distribution and temperature dis-
tribution on the ignition dwell in an early DI HCCI en-
gine has been modeled using a KIVA 3V code [15]. It
was demonstrated that, at the end of fuel injection, the
ignition dwell duration was more sensitive to the in-

cylinder temperature distribution than the air—fuel dis-
tribution. However, these modeling approaches have
been limited to early direct injection, and further de-
velopment for modeling multiple injection and late
direct injection HCCI is required.

Probability density function (PDF)-based models
provide a sophisticated approach while including de-
tailed chemistry and accounting for inhomogeneities
in composition and temperature. As special cases, sto-
chastic reactor models (SRMs) are derived from the
PDF transport equations assuming statistical homo-
geneity. The closed volume SRM has been demon-
strated to accurately predict autoignition timing, in-
cylinder pressure, and emissions in HCCI engines
[16-18]. The model has also been coupled with a
commercial code to enable multiple engine cycle sim-
ulation [19,20]. In previous works, the SRM has been
applied to simulate port-fuel-injected HCCI engines.
The present work is the first step of development
of an advanced SRM-DI model capable of simulat-
ing multiple direct injection HCCI combustion and
emissions. This advancement entails the modeling of
the engine breathing processes in the existing SRM
framework, thus accounting for the detailed chemical
kinetics, particularly during multiple and late direct
injections.

The aims of this paper are the following:

(1) To develop a new SRM-DI to account for gas ex-
change and compression—combustion—expansion
in a direct injection HCCI engine, such that de-
tailed chemistry can be accounted for during the
direct injection process.

(2) To formulate a weighted-particle Monte Carlo
method to solve the transport equation includ-
ing the gas exchange terms. As compared to the
equiweighted method used in previous works
[18-20], a weighted-particle method requires
fewer particles to account for the gas exchange
process.

(3) To incorporate a novel down-sampling algorithm

to reduce the number of particles in the ensem-

ble [21]. A number of new particles are added
into the system during the air intake and fuel in-
jection, which results in a dramatic increase in
the computational cost for the following cycle.

In this work, a down-sampling algorithm is em-

ployed to reduce the number of particles while

conserving the most important statistical proper-
ties of the ensemble.

To validate the new model against the experi-

mental data for in-cylinder pressure profile and

emissions at a single engine operation point.

To apply the new SRM-DI to predict the qualita-

tive trends associated with some engine paramet-

ric variation, such as varying air—fuel ratio and
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early DI timing to test the capability of the model
to simulate early DI HCCI engines.

This paper is organized as follows. In the second
section, the submodels for the DI HCCI engine are
described. In Section 3, the numerical method and its
implementation are presented. In Section 4, an error
analysis is conducted to determine appropriate down-
sampling parameters by studying the statistical errors
associated with the procedure. Multiple cycle simula-
tions were performed to test if the error due to down-
sampling was accumulated in subsequent engine cy-
cles. Furthermore, the effect of the down-sampling
procedure in terms of computational gains and ac-
curacy are evaluated by comparing the in-cylinder
temperature and chemical species obtained with and
without this technique. Two cases, “well-mixed” and
“partially mixed,” are investigated. After understand-
ing its numerical behavior, the model was validated
(Section 5) against experimental data from a two-
stroke DI HCCI engine. In Section 6, the SRM-DI is
applied to study the effects of varying air—fuel equiv-
alence ratio and early direct injection timing on the
combustion and emissions. Conclusions are drawn in
the final section and future work is discussed.

2. SRM for direct injection HCCI

The partially stirred reactor (PaSR) model has
been widely used as a test bed for evaluating chem-
ical mechanisms and mixing schemes in the field of
combustion [22-24]. This model assumes statistical
homogeneity of the mixture in the reactor. It accounts
for mixing and can include large coupled chemical re-
action mechanisms.

In this study, we develop a stochastic reactor
model on the basis of the PaSR to simulate a direct
injection HCCI engine. Early DI HCCI, as the name
suggests, involves an early injection of fuel into a
mixture of air and trapped residual gas (TRG), fol-
lowed by compression and autoignition. This model
is referred to as the stochastic reactor model for direct
injection (SRM-DI) and can be written as
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where F is the mass density function (MDF) and
Y stands for scalar variables such as mass frac-
tions of chemical species and temperature; i.e., ¥ =
W1y s, Yg41) = (X1, ..., Y5, T). The five terms
accounting for piston movement, chemical kinetics
and volume change, convective heat transfer, mixing,
and gas exchange and fuel injection, respectively (as
indicated in Eq. (1)) are now described in more detail.

The second term on the left-hand side (LHS) of
Eq. (1) denotes the effect of the piston movement on
the MDF. The chemical kinetics and the energy asso-
ciated with the change in volume is represented by the
third term on the LHS, where

Gl-:—", i=1,...,s, 3)
e )

Here, M; is the molar mass of species i, p is the den-
sity of the mixture, &; is the molar production rate of
the ith species, V' is the volume, m is the mass, and ¢;
represents the specific internal energy of species i. In
this paper, a deterministic solver based on a backward
differentiation formula method was implemented to
solve the set of stiff ordinary differential equations.
The fourth term on the LHS of Eq. (1) represents
the heat transfer model, where /& denotes the fluctua-
tion (the implementation is discussed in Section 3.1)

U(T) = heA (T — T 5)
(T)=-— 77 - Tw), (

Cy Mot

hg is the Woschni heat transfer coefficient, A is the
heat transfer area, Mo is the total mass, cy is the
specific heat capacity at constant volume, and Ty
denotes the wall temperature. The convective heat
transfer occurring between the fluid and the wall is
modeled as a stochastic jump process based on the
Woschni heat transfer coefficient [18,20].

For mixing, the interaction by exchange with the
mean (IEM) model, represented by the first term on
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the right-hand side (RHS) of Eq. (1), was used. The
IEM model (also known as the linear mean square es-
timation (LMSE) model) is a deterministic model that
works on the principle that the scalar value at a point
approaches the mean scalar value over the entire vol-
ume with a characteristic time tyy,. For a single scalar,
the IEM model is given by

d C,
‘ﬁf’) =-2 “ () - (9). ©)

where Cy is a model constant. In this paper, Cy is set
to 2.0 as suggested by Pope [25].

On the RHS of Eq. (1), the last three terms account
for the gas exchange and fuel injection processes in
a DI HCCI (air intake, exhaust, and fuel injection).
Ta, Te, and 7¢ denote the characteristic residence times
of air, exhaust gas, and fuel, respectively. a Fi, £Fin
stand for the mass density functions associated with
the intake air and fuel streams.

3. Numerical method

In this section, the numerical method employed
for the solution of Eq. (1) is discussed in detail.
A weighted-particle Monte Carlo method with an op-
erator splitting procedure has been implemented in
this work.

The particle method involves representation of the
reactive system by a notional ensemble of N particles.
Thus the approximation for the mass density function
F reads

FW,t)=p®, ) f,1)

L P ) 0)
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where W) is the statistical weight of the ith particle.
Therefore,
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Following this approximation, Fo(y) = Vlo X

z—l Wél)S(v/ 1// )), each particle is moved ac-
cording to the evolutlon of the mass density function
as given in Eq. (1).

An operator splitting technique is used to simplify
an evolution equation by splitting the complex equa-
tion into a set of equations. The advantage is that the

split equations can be treated separately at the expense
of introducing a splitting error. The operator splitting
technique has been discussed in detail elsewhere [26]
and has been applied to the PDF transport equation by
Pope [25]. It has been demonstrated that the splitting
is first-order accurate [27].

In previous work [18-20], an equiweighted parti-
cle method was used. In this work, a weighted-particle
method is employed so that it can be directly cou-
pled with the down-sampling procedure. The imple-
mentation of the chemical kinetics, mixing, and heat
transfer submodels is readily generalized to weighted-
particle systems, since they are independent of the
statistical weight.

3.1. Implementation of SRM-DI

Based on the numerical method described above,
the SRM-DI was implemented as follows:

(1) Initialize t = 0, tsop, At, CAD (crank angle
degree) = IVC (intake valve closing). Deter-
mine the state of the particle system at time
t=0.

(2) Progress in time with a time step, ¢ — 1 + At.
If # > t510p, then stop. Else, if CAD < EVO (ex-
haust valve opening) go to step (3); otherwise go
to step (8).

(3) Perform the mixing step: the particle ensemble
is updated according to Eq. (6).

(4) Perform the reaction step.

(5) Perform the mixing step.

(6) Choose particles uniformly and perform the heat
transfer step TO 7O _ 0 ), where the fluc-

tuation h¥) = I )5 ¥ and Cy, is a parameter in

the model that determines the magnitude of the
fluctuation.
(7) Go to step (2).
(8) Perform the inflow—outflow step, as described
below.
(9) If CAD = IVC perform the down-sampling.
(10) Go to step (2).

The inflow—outflow step as given in point (8) above is
a new submodel and is discussed in detail in the next
section.

3.2. Implementation of inflow and outflow

In this study, the inflow—outflow model accounts
for the following events: intake of fresh air, fuel in-
jection, and exhaust.

In an inflow event, fresh air and fuel particles are
added to the system, N — N + Nj,, where Nj, de-
notes the number of new particles added per step
(Atr). The weight of a new particle equals its mass,
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leading to
At . §
W(i) _ Tin XMt m' x At
Nin Nin ’
i=N+1,...,N+ Nj. (&)

Here, tj;, is the characteristic residence time of the in-
flow stream (e.g., air, fuel), and mi? denotes the mass
flow rate of the inflow stream.
For outflow we note that the mass to be removed
during the time interval At is given by A", where
Om denotes the mass flow rate of the exhaust stream.
Hence the fraction of the mass to be removed equals

At ri" . Furthermore, in the experimental studies on
the two stroke HCCI test engine, it was observed that
less than 1% of fuel was lost on account of the fuel
injection during the outflow event. Therefore, only
the weights of the stochastic particles associated with
the exhaust (residual burnt gases) are reduced during
an outflow event. However, due to mixing of a small
amount of fresh fuel with the outflow, some fuel is
lost through the exhaust.

For the particles associated with the exhaust, the
weight is reduced as follows:

WO o (1AL
Te

. mout
=W(’)x( — At ) i=1,...,N.
Mtot

(10)

For simplicity, we assume constant inflow and out-
flow rates throughout. Within a time step t < CAD <
t + At the algorithm is implemented as follows:

(1) Given the state at CAD = EVO, initialize W) =
wi.

(2) For EVO < CAD < EVC (exhaust valve clos-
ing), perform an outflow event; i.e., reduce the
particle weight w® proportionally according to
(10).

(3) For IVO (intake valve opening) < CAD < IVC,
perform the inflow of fresh air; i.e., add N, parti-
cles to the ensemble according to Eq. (9), where
titiy = iy and Njp = Na. rh;‘i‘r denotes the mass
flow rate of inflowing air.

(4) For SOI (start of injection) < CAD < EOI (end
of injection), perform the inflow event for fuel
streams according to Eq. (9) with m;, = rhifﬂel
and N, = Ny. n%if‘:lel
of injected fuel.

denotes the mass flow rate

Adding particles to the ensemble causes a signif-
icant increase in computational expense. It is neces-
sary to reduce the number of the particles without

affecting the statistics of the ensemble. This proce-
dure, called down-sampling, is discussed in the next
section.

3.3. Down-sampling algorithm

The simplest method, which removes particles
chosen according to uniform distribution from the
ensemble, leads to large spurious fluctuations of en-
ergy and mass of the chemical species. In this study
we apply the method introduced by Vikhansky and
Kraft [21], which randomly redistributes the statis-
tical weights between the particles in such a way
that the weight of some particles becomes 0 (i.e., the
particles are removed), while the most important sta-
tistical moments of the ensemble are conserved and
overall the ensemble remains statistically unaffected
(a more detailed description of the method is given in
Ref. [21]). In the present investigation we chose ns
species, which, due to their high significance, have to
be conserved exactly in addition to conserving the en-
thalpy of the mixture. The algorithm is implemented
as follows:

(1) Determine the state of the particle system at the
time corresponding to IVC:

p O wo, =1ve,
i=1,.. N, j=1,....s+1

(2) Calculate the average values of all properties
(¥7) and sort them in descending order, where

S
Iy iwe
i=1,.... N, j=1,...s+1

(3) Choose the first ns species according to {(y;) and
the enthalpy; then calculate the (N x (ns + 1))
matrix /1, where

nﬂzwj(.l), i=1,...,
(4) Set maximum weight Wp,x and perform the re-
duction (for the reduction algorithm see [21])
with parameters I7 and Wpax. Calculate the new
statistical weight w®,
(5) Remove all particles satisfying the condition
wW® < W@ x 107>, The number of re-
YW

maining particles n lies in the interval (55—,
max

N, j=1,....,ns+ 1.

ZW +ns+1).

4. Numerical properties of the algorithm

The SRM-DI discussed above was implemented
to simulate a two-stroke, three-cylinder, isooctane fu-
eled HCCI test engine. The model was applied to
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Table 1

Engine operating parameters

Description Value Units
Displaced volume 1500 cm?
Bore 86 mm
Stroke 86 mm
Connection rod 154 mm
Speed 1200 RPM
Fuel Isooctane -
Compression ratio 13.5 -
EVO/EVC 140/180 ATDC CAD
IVO/IVC 155/215 ATDC CAD
SOI/EOIL 165/175 ATDC CAD

simulate only the first cylinder operating in the HCCI
mode. An isooctane and n-heptane reaction mecha-
nism consisting of 157 species and 1552 reactions
was used to simulate the fuel chemistry [19]. The de-
scription of the engine and its operating parameters is
given in Table 1. In the study, the temperature and the
mass fractions of OH, CO, and NO, were considered
to represent the scalar variables to be studied for data
analysis. Two cases of turbulent mixing, one partially
mixed (T, = 2.0 x 1072 s) and the other well mixed
(tm = 2.0 x 10~4 s), were chosen to represent the
extremes of the average characteristic mixing times
from EVO to IVC. The mixing time for compression—
combustion—expansion is set to Ty = 1.0 x 1072,
as the turbulence time scale is on the order of 1072 s
around TDC [16]. Furthermore, for all the cases stud-
ied, the mixing time during the outflow (10) event is
set to 2.0 x 10~! s to maintain the loss of fresh air
charge and fuel through the exhaust below 1%. How-
ever, the duration of engine scavenging after EVC is
sufficient to make the charge almost homogeneous
at IVC. Before investigating the numerical properties
of the down-sampling algorithm, the influence of the
number of fuel particles added to the system during
every step of the direct injection phase was studied.
It was found that the simulated results obtained by
varying the numbers of fuel particles agreed well with
the case where only one fuel particle was added per
time step. This indicates that for the given operat-
ing conditions, the change in number of inflowing
fuel particles does not influence the model predictions
significantly. Next, we evaluate the sensitivity of the
down-sampling technique to its parameters.

4.1. Determination of down-sampling parameters

The down-sampling algorithm contains two para-
meters, the number of conserved scalars ns + 1 and
the number of particles n. In this section, the influ-
ence of these parameters on the statistical and system-
atic errors is studied and then the appropriate down-
sampling parameters are determined. In order to study

the error incurred exclusively by the down-sampling
process, the stochastic heat transfer submodel was
switched off. Thus, the down-sampling procedure is
the sole source of statistical error. Furthermore, the
partially mixed case was studied particularly due to
its high standard deviation.

In the particle method, the macroscopic proper-
ties are calculated by averaging over all particles
at each point in time. In order to estimate the ran-
dom fluctuations of the down-sampling algorithm,
L repetitions were performed. The corresponding val-
ues of the macroscopic properties are denoted by
¢ Dy, ..., ¢ (t), where n is the number of
particles after down-sampling.

The empirical mean value of the macroscopic
properties is

L
1
=73 Do,
=1

and the empirical variance of the macroscopic prop-
erties is

L
n 1 n n
ng ,L)(t) — z Z[g—( ’l)(t)]z _ [775 L) (t)]Z.
=1

The statistical error is the difference between the em-
pirical mean value and the expected value of the
macroscopic properties. The statistical error is defined
as

,L
B @)
o
ti Ststop, i =iAL, 120,

Cstat = max{ap
1

where o, = 3.29 is used for a confidence level of p =
0.999.

The systematic error is the difference between the
expectation of the macroscopic properties and the ex-
act value of the functional. In this study, the base case,
i.e., the simulation without down-sampling, is used as
the reference solution F(¢). Thus, a measure of the
systematic error is defined as

Csys = ml_ax{|17§n’L)(Zi) - F(ti)|}~

Asymptotically (i.e., for L — 00), the statistical er-
ror is inversely proportional to /L. To determine an
appropriate number of repetitions, two set of simula-
tions, one with 10 and the other with 80 repetitions,
were compared. For these two cases 10 species were
conserved. A detailed comparison is given in Table 2.
From Table 2, it can be observed that the statistical er-
ror scales inversely to /L and the error is sufficiently
small at L = 10 to keep the number of repetitions at
that value in the remainder of this section.
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Table 2

Comparison of statistical errors between the sets of simula-
tion with L = 10 and L = 80 (OH, CO, NO, are expressed
in terms of mass fraction)

OH co NOy T [K]
6.16 x 1078 2.45 x 107* 1.29 x 1077 6.36
221 x 1078 8.62 x 1073 5.58x 107102.22

L1=10
Ly =80

Ly TT
Cstat i
I, X N 0.985 1.0 0.817 1.01

stat

Table 3
Comparison of statistical errors and systematic errors (OH,
CO, NO, are expressed in terms of mass fraction)

OH CO NOy T [K]

ns=10,n=32
Cstat 898 x 1078 331x 107 2.14x1079 9.22
Csys 6.55x 1078 7.49x 1075 125x107° 2.53

ns =10,n =213
Csar 1.01x 1078 1.09x 107% 3.56x10710 1.62
Csys 7.15x 1077 231x 1070 3.82x10710 0.66

In Table 3, the systematic and the statistical errors
for the number of particles, n = 32 and n = 213 are
provided. These data indicate that the statistical error
is generally larger than the systematic error. There-
fore, in the next part we will only focus on the statis-
tical error.

Next, we conducted a series of six simulations. In
cases (a) to (d), 9, 19, 39, and 79 species were con-
served respectively. Case (e) denotes the simulation
run conserving just the four elements (C, H, O, N). In
all the cases the total enthalpy was conserved, while
the number of particles after down-sampling varied
from 13 to 233. Case (f) was performed without con-
serving any properties and the number of particles
was varied as 10, 20, 45, 95, and 200. The compar-
ison of statistical errors associated with the species
OH, CO, NOy, and the temperature T between these
simulations is shown in Fig. 1. It can be observed that
the statistical error for OH, NOy, and T scales in-
versely with the number of particles, whereas that for
CO is inversely proportional to /z. This difference
could arise from the correlation of the scalar proper-
ties for different particles. Furthermore, the number
of conserved species were not found to influence the
error significantly. However, without conserving any
species, a significant error was incurred. Based on this
study, it can be concluded that for the engine simu-
lation with the given conditions, case (a) conserving
9 species with 50 particles retains adequate accu-
racy. Having studied the down-sampling parameters,
we now consider multiple engine cycle simulations.

Cycle simulations help in better understanding cyclic
variation of the scalar properties and thereby devising
variable control strategies for optimal engine perfor-
mance and emissions.

4.2. Multiple cycle simulation

In this section multicycle simulations are con-
ducted to investigate the accumulation of error on
account of the down-sampling during several engine
cycles. Here, ns and n are set to 19 and 120, re-
spectively. With the down-sampling strategy imple-
mented, 10 successive engine cycles for both cases of
characteristic mixing times were simulated. A confi-
dence band, with respect to the number of particles,
for the simulation with one repetition was employed
for data analysis.

The empirical mean value of scalar variables, in a
single-run simulation, is

" vOHwd
P w @)
where n represents the number of particles after

down-sampling.
The empirical variance is

Yy D0 Pw®
Z?:l w @)

We use as an estimate for the variation of the empiri-

cal mean the confidence interval

n n
= {"? = 3~0@, o) + 3.0@}

an
Fig. 2 depicts the effect of down-sampling on mass
fractions of CO and NOj for the partially mixed case,
while Fig. 3a shows mass fractions of NOy for the
well-mixed case. In these figures “c” denotes the en-
gine cycle index. For the partially mixed case the
confidence band for the 10th cycle for the chemical
species (Fig. 2) are very wide, indicating a large stan-
dard deviation (the same situation for other cycles).
This is due to the fact that the inhomogeneities are
very strong because of slow mixing. As compared to
the partially mixed system, the simulation results for
the well-mixed system show a much narrower con-
fidence band on account of the greater homogene-
ity and hence lower standard deviation. Furthermore,
for the well-mixed system, the temperature and mass
fractions of OH and CO from the third to the 9th
cycles lie within the confidence bands of the 10th
cycle. However, the profile for the NO, mass frac-
tion lies outside the confidence band of the last cy-
cle. For example, from Fig. 3b, it can be seen that
the NO, confidence band of the 10th cycle does not

’
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Fig. 1. Effect of the number of conserved species and the number of particles after down-sampling on the statistical errors of
the mixture’s properties in the partially mixed case: (a) in-cylinder temperature, (b) OH mass fraction, (¢) CO mass fraction,

(d) NOy mass fraction.

overlap with those from the 6th and 7th cycles. This
means that the mixture is so well mixed that the
variance of mean NOy mass fraction is on the same
order as its cycle-to-cycle variation. This is due to
its high sensitivity to the temperature fluctuations in
the system. However, there is no evidence for ac-
cumulated error with respect to the number of cy-
cles.

In conclusion, for both the well-mixed and par-
tially mixed cases, the down-sampling did not accu-
mulate noticeable errors for the multicycle simula-
tions.

4.3. Down-sampling: efficiency gains

In order to evaluate the effect of incorporating the
down-sampling algorithm into the SRM-DI model,
the simulation results obtained with and without
down-sampling were compared. The influence on the
computational expense and the error caused by down-
sampling for the partially mixed and well-mixed sys-
tems were also studied. For this study, we define the
down-sampling factor M as the particle reduction ra-
tio, i.e., M := N/n, where N and n are the number
of particles before and after down-sampling, respec-
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Fig. 2. Mean properties of the mixture for several engine
cycles (confidence bands plotted for the 10th cycle) in the
partially mixed case. Here, “c” denotes the engine cycle in-
dex: (a) CO mass fraction; (b) NO, mass fraction.

tively. Only one repetition of the simulation run was
performed, and the confidence bands were obtained
using Eq. (11).

Figs. 4 and 5 summarize the simulated results
for the partially mixed and well-mixed systems, re-
spectively. The figures demonstrate that introducing
the down-sampling strategy into the SRM-DI does
not significantly reduce the accuracy of the simula-
tion. The simulated results obtained with the down-
sampling factors 3 and 5 were nearly within the
confidence band determined with M = 1 (i.e., the
base case). However, when M was increased, e.g.,
M = 9.3, the profiles of scalar variables overlapped
with the confidence bands of the corresponding vari-
ables for the base case. Therefore, overall it can be
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Fig. 3. Mean NO, mass fraction and the confidence band for
several engine cycles (confidence bands plotted for the 10th
cycle) for both subfigures in the well-mixed case: (a) mean
value, (b) confidence band.

concluded that the down-sampling procedure is ac-
ceptable in the simulation of a HCCI engine under
given conditions, although larger down-sampling fac-
tors can lead to higher error.

Furthermore, the computational costs with and
without down-sampling are compared and the results
are listed in Table 4. It can be seen that within ac-
ceptable error, introducing down-sampling can speed
up the simulation approximately eight times for both
partially mixed and well-mixed systems.

Following the systematic numerical investiga-
tions, the model was validated against experimental
data for combustion parameters and emissions, as
given in the next section.
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Fig. 4. Effect of down-sampling on the simulated
properties of the gas mixture in the well-mixed case
(tm = 2.0 x 1074 s): (a) in-cylinder temperature, (b) OH
mass fraction.

5. Model validation

Measurements for in-cylinder pressure and CO,
HC, and NO, emissions were carried out on the same

Table 4
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Fig. 5. Effect of the down-sampling on the simulated
properties of the gas mixture in the partially mixed case
(tm = 2.0 x 102 s): (a) in-cylinder temperature, (b) CO
mass fraction.

engine as described in Section 4, but with different set
of operating conditions. The operating parameters are
given in Table 5.

Comparison of computational times for well-mixed and partially mixed systems

Simulation case Factor M CPU time (min)

rm:2><]0_2s rm:2x10_4s
Base case (N =n =334) 1 705 252
Down-sampling (n = 111) 3 237 86
Down-sampling (n = 66) 5 138 47
Down-sampling (n = 36) 9.3 83 30
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Table 5
Engine operating parameters
Description Value Units
Speed 1600 RPM
Fuel Gasoline-92 -
EVO/EVC 132/205 ATDC CAD
IVO/IvVC 155/224 ATDC CAD
SOI/EOI 190/205 ATDC CAD
EGR ratio 36% -
Relative air/fuel ratio 1.36 -

50 T T T T
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45 * Experiment

40
S 35
o

30

25

20

CAD

Fig. 6. Experimental and simulated in-cylinder pressure pro-
files for a two-stroke HCCI engine (A = 1.36, 1600 RPM).

HCCI combustion with too advanced an autoigni-
tion timing can result in a rapid surge in NOy emis-
sions and harsh noise caused due to high pressure-
rise rates. By delaying the autoignition timing, NOy
and noise can be controlled with only a slight sacri-
fice of the thermal efficiency. This section presents a

comparison between model predictions and measure-
ments for an operating condition corresponding to the
autoignition timing delayed after TDC.

The same reaction mechanism with isooctane
(mass fraction 0.9181) and n-heptane (mass fraction
0.0819) was used to correspond to an octane num-
ber of 92 (RON = 92). A turbulent mixing time,
1=6x10"3 [s] was implemented for the closed
volume portion of the engine cycle. The number of
stochastic particles was chosen as N = 100, and the
parameters Cp, and Ty were set to 40 and 450 K,
respectively. The results of the model validation are
shown in Figs. 6 and 7. The model agrees well with
the experimental data for the in-cylinder pressure pro-
file as well as for the CO emissions; however, the
unburnt HC and NOy emissions are underpredicted.
Prediction of unburnt HC emissions can be further im-
proved by accounting for crevices, as most of the HCs
originate from crevices for an engine operating in
the premixed mode. In the experiments, a significant
cycle-to-cycle variation for the peak in-cylinder pres-
sure (hence the temperature) was observed. In such
a scenario, the engine cycles corresponding to higher
peak temperatures were found to be responsible for
appreciable levels of NO, emissions. Cycle-to-cycle
variations have not been accounted for within the
present work.

In the next section, the model is utilized to predict
the effect of varying engine operating parameters on
HCCI combustion and emissions.

6. Effects of relative air—fuel ratio and injection
timing on combustion

In order to control HCCI engine operation, sev-
eral approaches have been investigated, for example,
changing relative air—fuel ratio, injection timing, IVO

O Experiment B Simulation

419.34 438.96 456.70

— .80

NOx(ppm)

CO(ppm)

1782.40

HC(ppm)

Fig. 7. Comparison of model predictions and measurements for CO, HC, and NO, emissions from a two-stroke HCCI engine

(A =1.36, 1600 RPM).
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Fig. 8. Effect of the relative air—fuel ratio on the mixture’s properties in the well-mixed case (1200 RPM): (a) in-cylinder
temperature, (b) in-cylinder pressure, (c) CO mass fraction, (d) NO, mass fraction.

timing, EVC timing, engine speed, boost pressure,
and intake gas temperature, as well as hybrid meth-
ods involving the integration of these strategies. With
the current development of the SRM-DI model, not all
mentioned strategies can be investigated in this work.
Here, we focus on evaluating the effect of two spe-
cific engine strategies, namely, varying relative air—
fuel ratio and early direct injection timing. Based on
the volume-averaged mixing time obtained from CFD
calculations, the well-mixed case was chosen and the
influence of varying the aforementioned engine oper-
ating parameters on combustion parameters and emis-
sions was predicted and qualitatively compared with
experimental results reported in literature. For all the
studies, we used the same engine as described in Sec-
tion 4.

6.1. Relative air—fuel ratio

HCCI combustion is influenced by the tempera-
ture, the pressure, and the species mass fractions of
the air—fuel-EGR mixture in the cylinder. Varying the
relative air—fuel ratio (A) directly influences the fuel
concentration. Generally, this technique is integrated
with others such as injection timing, injection method,
and variable valve timing to control the HCCI engine.

In this section, HCCI combustion with early
single-stage direct injection was investigated while
relative air—fuel ratio was varied from 1.75 to 4.0. The
results are shown in Fig. 8. It can be observed that as
A decreases, the peak temperature, the peak pressure,
the mass fraction of NO, increase while CO mass
fraction decreases. When A equals 1.75, the maxi-
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Fig. 9. Effect of relative air—fuel ratio on cylinder pres-
sures and heat release rate with single injection and in-
jection timing = 100° ATDC in intake stroke (1000 RPM;
Ref. [28]).

mum pressure gradient is higher than 15 bar/CAD.
This could cause engine knock and high NO, emis-
sions. On the other hand, when A is too high, i.e.,
fuel is too lean, the mixture fails to burn completely,
in turn leading to high CO concentration. The trends
associated with the influence of varying A on the in-
cylinder pressure match well with the experimental
data in Fig. 9 (Fig. 7 of Ref. [28]). In particular, for
the experimental data, it can be observed that the ig-
nition timing varies with A, on account of the steady
state operation. Whereas, for the numerical study, all
simulations begin from the same initial condition for
the first of the two-cycle simulation.

6.2. Direct injection timing

In this section, the effect of varying SOI is studied.
As the injection is well before TDC, the mixture is
almost homogeneous before the ignition is triggered.
Fig. 10a depicts the influence of early direct injection
timing on the combustion parameters, namely, au-
toignition timing (crank angle corresponding to 10%
cumulative burn rate) and combustion duration (dif-
ference between the crank angles corresponding to
90% and 10% burnt fractions), as predicted by the
model. It can be observed that the two combustion
parameters show hardly any sensitivity to the range
of early injection timings studied. This behavior can
be attributed to the appreciable time (following early
direct injection) available until the end of the com-
pression stroke for the air, the fuel, and the EGR to
mix almost homogeneously. Qualitatively this is sup-
ported through measurements (as shown in Fig. 10b)
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Fig. 10. Effect of injection timing on HCCI combustion
varying with SOI: (a) simulation (A = 2.8, 1200 RPM);
(b) experiment (A = 1.2, 1800 RPM) (Ref. [28]).

carried out on a four-stroke gasoline-fueled HCCI en-
gine elsewhere, where the effect of early direct in-
jection timing on HCCI combustion was reported to
be negligible. To study the effect of direct injection
timings later than those studied above, a more sophis-
ticated treatment of the mixing (than what the IEM
model provides) is necessary. In particular, localness
of the scalars and stratification need to be accounted
for, which is the subject of the next publication.
However, for the given conditions the new SRM-
DI model qualitatively predicted the effects of varia-
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tion in the relative air—fuel ratio and the early direct
injection timing on HCCI combustion and emissions.

7. Conclusions

A novel SRM-DI model based on the proba-
bility density function (PDF) approach was formu-
lated to simulate early direct injection HCCI en-
gine operation. With the incorporation of the gas
exchange processes, the computational expense in-
creased rapidly. Hence, a conservative down-sampling
procedure combined with a weighted-particle Monte
Carlo method was developed to reduce the number of
particles while conserving the statistical properties of
the ensemble.

A systematic numerical investigation of the model
performance with respect to the various numerical
parameters was carried out. It was observed that
the algorithm was more sensitive to the number of
particles than to the number of conserved chemical
species. Furthermore, multiple cycle simulation stud-
ies demonstrated that the error due to down-sampling
was not accumulated with respect to the number of
engine cycles. Additionally, implementing the down-
sampling technique in an engine cycle simulation re-
sulted in a speed-up by a factor of 8, without incurring
significant error in the numerical solution.

The model validation shows that the predictions
for in-cylinder pressure and CO emissions at a single
operating point in a two-stroke direct injection HCCI
engine agree well with the experimental values. This
depicts the model’s ability to make quantitative pre-
dictions on HCCI combustion and emissions, for the
given conditions.

Furthermore, the influence of varying the relative
air—fuel ratio and direct injection timing on HCCI
combustion parameters as depicted by the model
agreed well in terms of qualitative trends observed
in measurements elsewhere.

The work presented in this paper was only fo-
cused on early direct injection; however, the frame-
work built here can now be used to formulate an
advanced model for simulating multiple and late di-
rect injection HCCI combustion. Currently efforts are
being focused on developing detailed submodels for
spray injection and turbulent mixing to improve the
predictive power of the model.
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